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Abstract—In partially automated cars, it is vital to understand 

the driver state, especially the driver's cognitive load. This might 

indicate whether the driver is alert or distracted, and if the car 

can safely transfer control of driving. In order to better 

understand the relationship between cognitive load and the 

driver performance in a partially autonomous vehicle, 

functional near infrared spectroscopy (fNIRS) measures were 

employed to study the activation of the prefrontal cortex of 

drivers in a simulated environment. We studied a total of 14 

participants while they drove a partially autonomous car and 

performed common secondary tasks. We observed that when 

participants were asked to monitor the driving of an autonomous 

car they had low cognitive load compared to when the same 

participants were asked to perform a secondary reading or video 

watching task on a brought in device. This observation was in 

line with the increased drowsy behavior observed during 

intervals of autonomous system monitoring in previous studies. 

Results demonstrate that fNIRS signals from prefrontal cortex 

indicate additional cognitive load during manual driving 

compared to autonomous. Such brain function metrics could be 

used with minimally intrusive and low cost sensors to enable 

real-time assessment of driver state in future autonomous 

vehicles to improve safety and efficacy of transfer of control.  

I. INTRODUCTION 

 What secondary activity should drivers of partially 

autonomous cars perform while the automated system drives 

the car?  

In NHTSA Level 3 automation, drivers can engage in 

secondary activities while the vehicle drives. Traditionally, 

research around brought-in devices usage during driving has 

been the provenance of distracted driving research. However, 

secondary activities require significant cognitive processing 

resources which may affect the driver’s ability to retake 

control if necessary. Thus it is important to identify ways to 

monitor drivers’ cognitive load while performing secondary 

activities while the car drives. Accurate assessment of mental 

workload could prevent operator error and allow facilitate 

intervention by predicting performance decline that can arise 

from either work overload or under-stimulation [5, 6, 7, and 

8]. This assessment also helps the designers of partially 

automated driving systems better understand the mental 

processes of the driver. 
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 Physiological measures are used with increasing reliability 

to assess driver state indicators such as stress, alertness and 

cognitive load [9]. They offer the possibility of passively 

monitoring driver states over an extended period of time 

without disrupting subject immersion in the experiment. 

Physiological measures such as heart rate, heart rate 

variability and respiration rate have been shown to be 

sensitive to operator workload [10]. Other physiological 

measures such as eye tracking and blink detection are popular 

research tools that have been adopted by human computer 

interaction researchers [11]. Pupil dilation, gaze directions 

and blink rate [12, 13] provide vital information into operator 

workload and have been used with high levels of success in 

detecting difficulty levels of in vehicle and driving tasks. 

Functional near infrared spectroscopy (fNIRS) is an 
emerging portable brain imaging approach that utilizes near 
infrared light and provide cortical oxygenation changes to 
assess localized brain activity. Traditional Neuro-ergonomic 
approaches based on measures of human brain hemodynamic 
or electromagnetic activity can provide for sensitive and 
reliable assessment of human mental workload in complex 
driving environments [14].  Neurological measures such as 
Electroencephalograph (EEG) have been used to study the 
cognitive load and attentional demand of experimental 
subjects [15, 16]. However, the artifacts in an EEG output due 
to muscle activity during motion, movement of electrodes and 
loss of contact during an experiment make the experiment and 
the subsequent analysis cumbersome. fNIRS systems provide 
some advantages over traditional neuro-ergonomic research 
in human computer interaction [14]. fNIRS systems are able 
to measure the oxygenated and deoxygenated hemoglobin 
content in the surface of the prefrontal cortex. They are 
reliably used to study the cognitive workload of subjects using 
derived oxygenation values in the prefrontal cortex [17, 18, 
19, 20]. The fNIRS systems can be miniaturized, built as 
battery operated and wearable sensors. Furthermore, fNIRS 
provides balance of spatial and temporal resolutions 
compared to traditional neuroimaging systems. These 
qualities pose fNIRS as an ideal candidate for Neuro-
ergonomic investigations of the brain in real world settings. 
In recent years, the use of fNIRS grew exponentially as the 
systems matured and has proven particularly beneficial for 
measuring workload during complex cognitive tasks [21, 22, 
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23, 24, 25, 26]. These measurements can provide a "ground 
truth" to benchmark and provide correlate measurements for 
less invasive and lower cost sensors that might be deployed for 
commercial installation in cars. 

II. PRIOR WORK 

There are many reasons to believe that drivers will use 

brought-in devices, such as cellular phones or table computers, 

in partially autonomous cars. Already, the usage of brought-in 

devices is increasing in vehicles: NHSTA reports that most 

drivers make use of cellular phones while driving [2]; there is 

a growing trend towards use of smart phones and other brought 

in devices [3]; a third of drivers 18-24 years of age believe they 

can take their eyes off the road for 3 to 10 seconds without 

increasing risk of accident [4]. The advent of automation 

makes such behaviors less risky, but a sudden transfer of 

control due to failure of automation or occurrence of a critical 

event on the road ahead at a moment when the driver is 

distracted could result in an accident after the transfer. 

 

Studies of traditional manual driving indicate that increases in 

driver cognitive load from secondary tasks lead to a decrease 

in driving performance. In a study by Blanco et al [27], it was 

found that there were significant decreases in performance for 

both automobile and truck drivers when they were asked to 

perform cognitively demanding secondary tasks on an in-

vehicle information system. In another study conducted by 

Engstrom et al [28] in a driving simulator, cognitive load was 

manipulated using a secondary task on an in vehicle display 

where subjects had to identify the presence of an upward 

facing arrow (target arrow) in a matrix of arrows. It was found 

that increasing the difficulty of the secondary (arrow 

identification) task decreases the longitudinal speed of drivers 

and increases the standard deviation of their lateral position on 

the road.  

Conversely, in studies of partially automated 

systems, operator underload or under stimulation of operators 

also causes a reduction in performance. In a recent study 

conducted by Miller et al [29], drivers exhibited higher 

incidences of drowsy behavior when monitoring the 

autonomous car’s driving than when they performed a 

secondary activity on a brought in device. Drowsiness was 

measured by number of incidences of prolonged eye closure 

and yawns. While this finding is novel for partially 

autonomous vehicles, it echoes findings present in earlier 

research works. The Yerkes-Dodson law, for example, states 

that the performance follows an inverted U-function with 

respect to arousal. In other words, performance for easier tasks 

is improved by increasing the arousal and for tougher tasks can 

be improved by reducing arousal to an optimal level 

[31,32]. Verplank proposed in his studies with tele-robotic 

operators that little or absence of any cognitive workload 

(“cognitive underload”) would be just as dangerous as high 

cognitive workload (“cognitive overload”) in operators of 

partially automated systems [30].  

 

III. EXPERIMENT GOALS 

 Prior works indicate while that a secondary task is 

detrimental to driver performance when manually driving, the 

lack of secondary task in automated driving causes 

drowsiness and sleepy behavior. We hypothesize that the 

addition of a secondary task causes the operator workload 

during manual operation to shift to the higher arousal region 

of the Yerkes-Dodson U function, while the absence of a 

secondary task when automation is engaged causes the 

operator workload to shift to the lower arousal regions. Hence 

both cases result in a decrease in driver performance.  

In order to analyze the effect of secondary tasks on operator 

workload during automated driving further, we replicate the 

study design created by Miller, et al, but with neuro-

ergonomic measures that allow us to better monitor arousal 

and cognitive load during the course of the experiment. As in 

Miller's study design, drivers were assigned different 

secondary tasks in different portions of the simulated drive 

when the car’s automation systems were engaged. The three 

secondary tasks were reading (R), watching a video (V) and 

monitoring the car’s driving (M). The reading and video 

activity (performed on a brought in device) were chosen in 

order to visually and cognitively stimulate the driver. The 

monitoring activity in combination with a low stimulating 

simulation environment was expected to cause a decrease in 

driver workload.  

The goals for the experiment were:  

1. To measure the cognitive load for three separate 

secondary tasks and while using the autonomous 

driving control of a partially autonomous vehicle and 

the cognitive load during manual driving. 

2. To understand the effect of cognitive load imposed 

by the secondary task on driving performance 

immediately after the transfer of control. 

IV. EXPERIMENT SETUP 

A. Experiment Settings 

   The experiment used a driving simulator with a fixed base 

vehicle, a seamless 270-degree cylindrical projection screen 

(Fig 2), separate channels for the side and rear view mirrors 

and an in-vehicle instrument cluster interface (Fig 3). The 

simulated world for the driving simulator was designed and 

Figure 1. Inverted U function of performance and arousal, Yerkes-Dodson 
law 
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constructed by the experimenters of this study.  

The simulator has an autonomous control feature which, 

when engaged, controls the longitudinal speed, steering and 

lane keeping functions of the car in the simulator. The 

autonomous system avoids collisions and stops at traffic 

signals and stop intersections as required by rules of the road. 

All drive data from the experiment is recorded as a log file in 

the form of time series of data at 60Hz. Drive data such as 

accelerator pedal position, brake pedal position, steering 

angle position, longitudinal speed etc. are recorded and are 

used to study driver performance.  

B. Participants 

 A total of 14 subjects, 11 males and 3 females, between the 

ages of 18 to 30 (M = 24.08, SD = 3.55) participated in the 

study. Participant performed all three secondary activities and 

the order of the secondary tasks was counterbalanced. 

Participants were recruited using on-line postings on public 

forums. 

C. Procedure 

 The duration of the study ranged from 35 to 40 minutes, 

depending on the participant’s driving speed. During the 

drive, participants were provided audio and visual alerts 

indicating an impending transfer of control from the 

automated system. Once the transfer of control was initiated, 

the drivers had 5 seconds to take over control of the car from 

the automated driving system or cede control of the car to the 

automated driving system. If the driver did not take or cede 

control, the control was automatically transferred at the end 

of the 5 second interval. 

 The overall study structure is shown in Figure 4. After a 

short (~5 min) practice segment, the study contained three 8 

minute 30 second intervals of autonomous driving. During 

these intervals, participants were asked to pursue the 

secondary activities: reading, video watching or monitoring 

the car’s driving. Each interval of autonomous driving was 

followed by a critical event to test driver performance 

immediately after the transfer of control. 

Two types of critical events were used in the study. The Car 

Cut-off event and the Pedestrian event. In the Car Cut-off 

event, another car in the environment approached the driver’s 

car in the adjacent lane and moved quickly and laterally in 

front of the subject. In the Pedestrian event, an “actor” in the 

simulation crossed the road in front of the driver. These events 

are shown in the Figure 5.   

 Throughout the experiment, the anterior prefrontal cortices 

of participants were monitored using a continuous wave fNIR 

Device model 1100 fNIR system that was designed at Drexel 

University and manufactured by fNIR Devices LLC 

(Photomac MD; www.fnirdevices.com). During the study, the 

data from the fNIRS device were recorded on a separate 

system using COBI Studio software [33]. To prevent ambient  

Figure 2. Driving Simulator used in experiment, showing the 270 degree 
cylindrical screen and in-simulator vehicle 

 

Figure 3. Steering wheel and Instrument Cluster inside the simulator 

vehicle. 

 

Figure 4. Study design showing the duration of drive and the occurrence of 
transfer of controls. All number indications are duration of segments in 

minutes. 
  

 

Figure 5. Illustration of Car Cut-off event (top left to right) and Pedestrian 
Event (bottom left to right) 
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light leakage, participants wore a black covering cloth band 

over the fNIRS sensor pad. Data for durations of automated 

and manual driving were extracted identified using markers.  

V. RESULTS AND ANALYSIS 

A. Brain Activation Results 

For each participant, raw light intensity fNIRS data (16 

optodes×2 wavelengths) were low-pass filtered with a finite 

impulse response, linear phase filter with order 20 and cut-off 

frequency of 0.1 Hz to attenuate the high frequency noise, 

respiration and cardiac cycle effects. All participant data were 

checked for any potential saturation (when light intensity at 

the detector was higher than the analog-to-digital converter 

limit) and motion artifact contamination by means of a 

coefficient of variation based assessment [34]. The fNIRS 

data for each task block were extracted using time 

synchronization markers of task onset and end marked during 

the experiment and hemodynamic changes for each of 16 

optodes during each trial block were calculated separately 

using the Modified Beer Lambert Law (MBLL). The final 

output of each optode is a measure of mean block oxygenation 

that is the difference in oxygenated hemoglobin and 

deoxygenated hemoglobin concentration changes.  

 

 First, we compared the manual and autonomous only 

driving conditions. As expected, autonomous driving required 

less mental effort which was reflected in lower activation. 

Results indicated that a significant difference was present for 

optode 5 (F1,17 = 13.6 p<0.002), optode 7 (F1,17 = 7.51 

p<0.02), optode 9 (F1,13 = 13.56 p<0.003), optode 11 (F1,17 = 

7.98 p<0.02), optode 13 (F1,21 = 5.93 p<0.03), optode 14 (F1,15 

= 7.08 p<0.02) and optode 15 (F1,19 = 16.6 p<0.001) using 

nonparametric Friedman’s test with false discovery rate 

(FDR) correction. These results are shown in Figure 7. 

Figure 6. Participant wearing the fNIRS device with covering headband to 

prevent ambient light (top). Brain measurement locations, optodes, on 
prefrontal cortex brain surface image (bottom)  

 

 

 

Figure 7. Comparison of manual and autonomous driving mental effort as 

indicated by oxygenation changes in left and right hemisphere. Error bars 

are the standard error of the mean (SEM). 

 

Figure 8. Projection of F-statistics map on brain surface image indicates 
right hemisphere dominance. Based on [x], BSpline interpolation was used 
to generate surface representation from F values of comparisons of manual 

vs. autonomous conditions along with thresholding determined by FDR. 
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For each participant, the oxygenation changes during the three 

activities (reading, video watching and monitoring tasks) 

were also analyzed. The activities were all performed while 

the automated systems in the car controlled the car’s driving. 

The oxygenation levels for each activity were measured and 

averaged over intervals between markers placed during the 

experiment and are indicative of the relative cognitive load of 

the driver while performing the secondary tasks. The 

oxygenation levels in the frontopolar region are shown in 

Figure 9 below. 

B. Driver Performance Analysis 

 Data from the simulator were extracted and analyzed using 

MATLAB®. Driver performance was measured using the 

reaction time of driver to critical events. The start of Car Cut-

off event is marked by the instant the cut-off car begins its 

lateral transition into the subject’s lane. The start of the 

pedestrian critical event is marked by the instant the 

pedestrian begins walking into the subject’s driving lane. 

Reaction time was measured from the start of the event 

(marked by an event marker in the simulator log) to the first 

instance of response by the driver in the simulator. Upon 

analysis of results, it was found that there was no significant 

difference in reaction times across all three conditions. The 

results are analyzed and displayed below in Figure 10. 

  

VI. DISCUSSION 

 The frontal cortex oxygenation changes indicate a 

significantly lesser cognitive load of the drivers during the 

autonomous mode than during manual driving mode. This 

supports the hypothesis that drivers are cognitively under-

loaded when the automation is engaged and the use of 

automated driving systems shifts operator workload to the 

lower arousal regions of the Yerkes-Dodson inverted U-

function.  

Cognitive load as measured by prefrontal cortex activation 

for the secondary tasks performed showed that the drivers 

experienced relatively lower cognitive load when asked to 

monitor the driving of the automated system and relatively 

high cognitive load while reading. Extended periods of lower 

cognitive load correlates with drowsy and sleepy behavior 

and is consistent with observations made by Miller et al [29].  

 While the observations in cognitive load show clear trends, 

there is no significant difference in the reaction time of the 

driver during the critical events following the transfer of 

control. This highlights in the additional information gained 

from brain activity measures. We believe that the structured 

nature and lengthy time duration of the transfer of control are 

the reasons for this observation.   

VII.  LIMITATIONS 

While the use of functional near infrared spectroscopy is 

effective in providing fine-grain measurement of cognitive 

workload, it may not be suited for everyday use in cars yet. 

However, this type of measure can provide deeper 

explanations for behaviors witnessed in cars--sleepiness due 

to lack of cognitive load, for example. These measures can be 

used in conjunction with other physiological measures-- gaze 

detection, heart rate, respiration measurements, etc.--to 

indicate key driver states before the onset of resulting 

behaviors arise. Such physiological sensing devices and 

methods are becoming decreasingly intrusive [35] and have 

 

Figure 10. Reaction time for critical event following transfer of control. 
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been shown by researchers in the past to be effective for 

continuous cognitive load measurement [9]. 

VIII. CONCLUSION 

This study demonstrates the usefulness of fNIRS technology 

in understanding driver states during automated and manual 

driving. The contribution of this paper is to understand the 

mechanism behind previously observed behaviors in 

autonomous vehicle operators (e.g. vigilance) and analyze the 

correspondence with cerebral activity changes. 
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