
Range: Exploring Implicit Interaction through
Electronic Whiteboard Design

Wendy Ju, Brian A. Lee, & Scott R. Klemmer

Stanford University
353 Serra Mall, Stanford CA 94305 USA

{wendyju, balee, srk} @stanford.edu

ABSTRACT
An important challenge in designing ubiquitous computing
experiences is negotiating transitions between explicit and
implicit interaction, such as how and when to provide users
with notifications. While the paradigm of implicit
interaction has important benefits, it is also susceptible to
difficulties with hidden modes, unexpected action, and
misunderstood intent. To address these issues, this work
presents a framework for implicit interaction and applies it
to the design of an interactive whiteboard application called
Range. Range is a public interactive whiteboard designed to
support co-located, ad-hoc meetings. It employs proximity
sensing capability to proactively transition between display
and authoring modes, to clear space for writing, and to
cluster ink strokes. We show how the implicit interaction
techniques of user reflection (how systems indicate to users
what they perceive or infer), system demonstration (how
systems indicate what they are doing), and override (how
users can interrupt or stop a proactive system action) can
prevent, mitigate, and correct errors in the whiteboard’s
proactive behaviors. These techniques can be generalized to
improve the designs of a wide array of ubiquitous
computing experiences.

Author Keywords
Implicit interaction, foreground/background, proactive,
proxemics, ubiquitous computing, whiteboards,

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces — input devices and strategies, interaction styles.

INTRODUCTION
One of the defining traits of ubiquitous computing is the
pursuit of invisibility. Different camps of interface
researchers and designers have taken different tacks
towards this elusive goal. This is evidenced by the amazing
diversity of ubiquitous computing genres which cite Mark
Weiser’s “Computer for the 21st Century” [32] as a
genesis—ambient displays, tangible user interfaces,
context-aware computing, attention-sensitive interfaces, just
to name a few. In light of this great variety of approaches
towards invisibility, it is useful to keep in mind that
invisibility, as championed by Weiser, is not so much about
staying beneath notice as enabling seamless
accomplishment of task.

In their paper, “Making Sense of Sensing Systems: Five
Questions for Designers and Researchers,” Bellotti et al.
point out that ubiquitous computing systems are particularly
susceptible to problems of unintended actions, undesirable
results, and difficulty detecting or correcting mistakes [1].
This occurs because of the high potential for
miscommunication when the interaction between the
computing system and the user occurs beneath the user’s
notice or without the user’s initiative. Since invisibility is
about enabling seamless accomplishment of desired tasks
rather than evading notice, we propose that it is important
to understand how to design transitions between explicit
and implicit interaction, so that users can make requests,
anticipate actions, and make corrections in a robust manner
even in situations where they have limited attentional,
cognitive, or physical bandwidth for interaction.

The goal of this paper is to explore the range of ways that
designers can establish shared understanding between user
and system without using keyboard, mouse, or stylus for
input, and without using dialog boxes for output. To
accomplish this task, we present a framework for implicit
interaction, as a well as an implementation of a ubicomp
whiteboard application, from which we extrapolate general
purpose implicit interaction techniques. It is our hope that
this framework and illustration will help to add implicit
interaction design to the range and repertoire of ubicomp
interaction designers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’08, November 8–12, 2008, San Diego, California, USA.
Copyright 2008 ACM 978-1-60558-007-4/08/11...$5.00.

17

IMPLICIT INTERACTION FRAMEWORK
Implicit interactions are an inevitable part of “smart”
products, whose actions contain some degree of agency of
activity that occurs without the explicit behest or awareness
of the user. Implicit interactions enable communication and
action without explicit input or output. One way that an
interaction can be implicit is if the exchange occurs outside
the attentional foreground of the user. This occurs in
traditional computing–when the computer auto-saves your
files, or filters your spam e-mail, for instance–as well as in
ubiquitous computing interaction. The other way that an
interaction can be made implicit is if the exchange is
initiated by the computer system rather than by the user–if
the computer alerts you to new mail, say, or when it
displays a screen saver. It may seem counter-intuitive that
something that grabs attention could be implicit, but the key
factor is that the interaction is based on an implied demand
for information or action, not an explicit one.

The implicit interaction framework (see Figure 1) divides
the space of possible interactions along the axes of
attentional demand and initiative [15]. Attentional demand
is the degree of cognitive and perceptual load imposed on
user by the interactive system [23]. Foreground interactions
require a greater degree of focus, concentration and
consciousness, and are exclusive of other focal targets,
while background interactions are peripheral, have less
demand and can occur in parallel with other interactions
[34]. Initiative is an indicator of how much presumption the
interactive system uses in the interaction. The framework

presumes the perspective of system designers, so
interactions that are initiated and driven by the user
explicitly are called reactive interactions, while interactions
initiated by the system based on inferred desire or demand
are proactive interactions [29]. By characterizing
interactions in this way, we are able to generalize about the
capabilities and features of whole classes of interactions in
a domain-independent fashion.

Let us examine these two dimensional variables in greater
depth:

Attentional Demand
Attentional demand does not correspond easily with any
particular metric, in part because attention is very complex
[3]. Any comprehensive definition needs to account not
only for the load on the resource of cognition [18], but also
for spatialization (whether something is in the center or the
periphery of one’s notice) [34], breadth (whether attention
is focused on a single stimulus or many), and gestalt
(whether attention is devoted to the abstracted whole or the
individual parts) [30]. The other challenge that researchers
have identified is that attention—by its very nature—can be
challenging to evaluate directly [23].

Interaction designers commonly manipulate attentional
demand by adjusting the perceptual prominence of objects,
often implicitly, through visual organization techniques
such as contrast, hierarchy, and weight [35]. Demand may
also be choreographed through more dynamic means, such
as pointing (e.g. calling attention to an object by gesturing

Figure 1. The Implicit Interaction Framework is based on two axes: the level of attentional demand the system places on the
user and the balance of initiative taken by the system on behalf of the user. This framework provides a domain-independent
characterization of an interaction’s implicitness.

18

at it) or placing (e.g. calling attention to an object through
its prominent placement) [7]. Still another way to affect the
degree of attention demanded is through abstraction and
chunking, whereby small interactions are combined into a
larger whole [4].

Initiative
Initiative is salient in situations where actors are working
together to accomplish a task, and can be highly contextual.
If a word processing program saves your document because
you command it to, it is clearly reactive. If it auto-saves
your document because you have set it to do so every 10
minutes, it may do so out of your attentional center, but it is
still responding to your explicit command. However, if the
same program saves your program because it feels that a lot
of changes have been made, it is more proactive; it is
operating in a realm of greater presumption with respect to
the needs and desires of the user.

Designers can manipulate the proactivity and reactivity of a
designed interaction by dictating the order of actions—does
the system act first, or wait for the user to act?—as well as
by choosing the degree of initiative—does the system act,
offer to act, ask if it should act, or merely indicate that it
can act? Designers also affect the degree of initiative when
they gather more data to ensure the certainty of the need for
an action or when they design in features to mitigate the
potential cost of error for the action. Even in the reactive
realm, the degree of initiative can vary based on the amount
that the user needs to maintain ongoing control and
oversight of an action in progress.

Types of Interactions
The following are descriptions of interactions and
illustrating examples for each quadrant:

Reactive/foreground
Interactions take place explicitly and at the user’s
command. Users are given explicit and detailed oversight
over actions and feedback on results. Such interactions are
appropriate when the interaction is the primary task and is
controlled by a knowledgeable user. Normal GUI
interaction falls in this quadrant.

Reactive/background
Interactions occur in response to user actions or external
stimuli, but feedback is generalized or hidden from the user
(abstraction). Such interactions can spare the user from the
nitty-gritty details of a task or help perform routine tasks
automatically with little or no user oversight (automation).
The “auto-save” on a typical word-processing program,
which is based on time elapsed, exemplifies this type of
interaction.

Proactive/foreground
Interaction takes place in the attentional foreground, but
involves greater urgency on the part of the system. The
system may provide unsolicited information (alerts) or

guide the interaction by instructing the user what to do
(direction). These interactions are typical in reminder and
tutorial scenarios. The “You’ve got mail” sound and
bouncing icon in typical e-mail program are examples of
proactive/foreground interactions.

Proactive/background
The system anticipates what to do and performs actions
with low oversight or input. These interactions are usually
used for tasks where the cost of error is low: for instance,
pre-fetching data, or modeling preferences. They may also
be employed to address critical tasks that the user is
somehow unable to perform, like alerting the police when
someone is intruding into one’s home.

Implicit Interaction Patterns
While it is possible to speak of implicitness or explicitness
as genres of interaction, the key value of the implicit
interaction framework is its ability to illuminate the
dynamic transitions between the quadrants in successful
interaction sequences. By framing effective interactions in
terms of the dynamics of attentional demand and initiative,
the framework illuminates patterns of social interaction,
which makes it distinct from frameworks which emphasize
patterns of domain-specific solutions, such as [5], or
context-specific routines, such as [30]. Thus, interaction
designers may more easily recognize and reason how and
why existing implicit interactions function, and leverage
that understanding in designing implicit interactions for
novel applications where domain precedents and
conventions may not exist.

To explore the design of implicit interactions, we have
applied the implicit interaction framework to the design of
new features for an interactive whiteboard. In the following
sections, we will discuss our selection of interactive
whiteboards as the domain for our exploration, review
related work on implicit interactions and whiteboards that
informed our framework and interaction design, outline the
specific design our electronic whiteboard system, Range,
and discuss the implicit interaction techniques illustrated by
our implementation.

INTERACTIVE WHITEBOARDS AS A TESTING GROUND
FOR IMPLICIT INTERACTION
The ephemeral nature of whiteboard ink allows users to
share ideas quickly—and just as quickly, to amend those
ideas. The improvisational quality of whiteboard use is a
good match for the provisional ideas that are generated in
informal design meetings, when people are more concerned
with entertaining possibilities than communicating fact. The
ubiquity of whiteboards in dedicated design spaces (such as
war rooms, and project rooms) and informal meeting spaces
(such as offices, break rooms, and hallways) is a testimonial
to the utility of the whiteboard to designers everywhere.

The utility and ubiquity of whiteboards makes them an
appealing platform for computational enhancement.
However, the attractive aspects of whiteboards are

19

inextricably linked to the factors that also make them
challenging to augment. The shared, public nature of
whiteboards means that the interface must succeed for
walk-up use, and the focus on quickly sharing ideas means
that any services provided must have a low threshold to
entry and minimal attentional overhead [27].

The issues associated with whiteboards are like those of
many ubiquitous computing situations: interactions are
often transient and needed on-demand; and the users are
often distracted and untrained. We have introduced this
whiteboard as an implementation that helps manifest the
opportunities for and challenges with implicit design in
ubiquitous computing.

RELATED WORK
This paper draws on related work in three areas: the
framing of interaction styles, workplace studies of
whiteboard usage, and the design of electronic whiteboards.

Design Frameworks for Implicit Interaction
The framework laid out in this paper builds on Buxton's
foreground/background model [2]; in it, Buxton
distinguishes foreground interactions—to paraphrase,
intentional activities that take place in the fore of human
consciousness—from background interactions, for example,
lights that automatically turn on when you enter a room—
which take place in the periphery of consciousness [34].
This model identifies the same attention and initiative used
in our framework, but assumes the two are inherently
linked. Actions initiated by the user are assumed always to
be taken with intent; actions taken by the system are
assumed to take place in the periphery. Our framework
amends Buxton’s framework by decoupling attention and
initiative into separate axes. Buxton’s foreground
corresponds to our reactive/foreground quadrant, and his
background corresponds to our proactive/background.

The implicit interaction framework bears some
commonality with Pederson’s model for tacit interaction
[24]. Pedersen’s framework models tasks based on the
degree of attention and focus required and the degree of
intentionality in action. However, the tacit interaction
framework describes interactions only in terms of the user’s
degree of intention. No distinction is made between
situations where users don’t have to think and plan because
the users have developed tacit knowledge of how to operate
a task, and situations where the users don’t have to think
and plan because the system is acting proactively on their
behalf. In a well-designed interaction, the user may be
unaware of the system, but this is the effect of successful
implicit interactions, and not the cause. Our framework
aims to illustrate specific methods of achieving seamless
interactions.

Horvitz et al. [13] present a related model for notification
displays. This framework uses an economic model of user
attention, and determines the expected utility of presenting
users with notifications, based on the level of attentional

cost to the user and the expected value of the information.
This model traverses the same territory as the right side of
our framework, ranging from proactive/foreground to
proactive/background. Its use of uncertainty as a measure of
proactivity guided our framework’s formulation of
initiative. This model is ideally suited to help computers
make dynamic determinations about the right way to deliver
a piece of information. It provides less guidance, however,
to the interaction designers developing the different
methods the computer might eventually chose from.

Workplace Studies of Whiteboard Usage
The Flatland whiteboard interface [23] was based on
informal observations of whiteboard use in office settings.
Researchers observed that office use of whiteboards was
characterized by thinking and pre-production tasks,
everyday content (such as task lists, sketches, and
reminders), clusters of content (both persistent and short-
lived), and a transitioning between semi-public to personal
use. Our design of Range builds on the observations that
Flatland is based on. It includes features to support a range
of use from display to whiteboard, freeing up space for
drawing, and clustering strokes of ink. The major departure
in our explorations is the use of distance sensing as input
for these features, and the avoidance of meta-strokes or
other explicit techniques.

Longitudinal studies of student engineering design teams
working on multi-month projects by Ju et al. [14] found
that engineers engaged in informal meetings would cycle
between phases of drawing and analysis; these changes
corresponded with changes in their physical proximity to
the whiteboard. Users would stand close to the board when
they were writing, further back when discussing written
artifacts in detail, or further back still when engaging in
meta-discussion. They also found that input was initially
free-form, but that meeting participants would often close
their meetings by performing post-facto structuring on
previously generated sketches, drawing borders, lines, and
arrows to explicitly group or relate elements on the board.

Our observations of whiteboards, based on photos taken
around campus in several departments, indicate that
sketches on the board can generally be categorized as either
“read-only” or “write-only.” What we called “read-only”
were messages that were meant to persist, and changed
infrequently: phone numbers of colleagues, lists of
upcoming deadlines. Sketches that were “write-only” were
usually generated in informal meetings, and were
infrequently referenced after their initial creation.
Regardless of field, people implicitly placed information
that is meant to be static or saved along the edges of the
board, saving the center of the board for temporary and
speculative work. This finding validates location of
information on the board as a crucial context variable.

20

Design of Electronic and Augmented Whiteboards
Electronic whiteboards emerged out of the ubiquitous
computing research at PARC, and their goal of computing
by the inch, foot, and yard [33]. PARC’s LiveBoard [8] was
a rear-projected electronic whiteboard that afforded pen-
based input through infrared-emitting styli. Tivoli [25], the
LiveBoard’s whiteboard application, introduced a set of
interaction techniques for creating and manipulating ink-
based documents, and supported input from multiple pens
simultaneously. Ink strokes were stored as grouped vector
objects, and the system introduced gestures for the
selection, grouping, and manipulation of ink content.

Subsequent research [21, 22] explored the use of implicit
structure in the spatial layout and proximity of users’
inkmarks. In grappling with whether such implicit
structures should be exploited by the electronic whiteboard
as input, or if input should be wholly freeform, the PARC
researchers introduced the first pen-based interface to
decouple recognition (having the system create an internal
hypothesis of the user’s intended structure) from
transformation (having the system in turn modify the
representation of the user’s data based on its belief about
the structure). These ideas were extended upon in SILK
[17] and subsequent informal user interfaces, e.g., [19] [16].
This selective and timed presentation of what the system
infers is used in our design of Range.

Recent work on electronic whiteboards has focused on
incorporating aspects of the user’s physical context in
whiteboard use into the interaction. Research on using
paper and digital artifacts with an electronic whiteboard
[16], on using pen-based command techniques for high-
resolution displays [10] and on physical gestures [28] and
tokens [20] for specifying behaviors begins to realize
Weiser’s vision of computation that is embedded into the
fabric of everyday life. Current work in ambient interfaces
is also exploring the understanding of the user’s physical

context as an implicit input in the domain of large
interactive public displays. Both Prante et al.’s Hello.Wall
[26] and Vogel & Balakrishnan’s interactive Ambient
Public Displays [31] stand out for explicitly noting the
proxemic relationship between the physical distance
between multiple users and the display, and for applying
that information to modify the contents of the display
accordingly. Our whiteboard design draws on similar
proxemic relationships between users and whiteboards, but
the implicit meaning of the being close or far from each
board differs because whiteboards are intrinsically meant
for writing as well as display.

This paper offers two contributions beyond this work in
electronic whiteboard interactions. The first is that it
provides a richer framework for describing and designing
implicit interactions; the second is that it is oriented
towards broadening the range of interactive technique
rather than the enriching the pool of whiteboard features.

THE RANGE WHITEBOARD
To illustrate how implicit interaction techniques can be
used to prevent, mitigate and correct the problems of
proactivity in the area of whiteboard interaction, we
designed an interactive whiteboard named Range, which
uses infrared distance sensors to subtly and proactively
interact with informal meeting participants.

Implementation
Range was implemented using a combination of pre-
existing hardware and software tools and technology.

Platform
The Range whiteboard prototype employs a rear-projection
SMART Board containing an SXGA+ resolution projector
(1400x1050) and a Windows XP PC. Four SHARP
GP2Y0A 150 cm analog distance sensors were mounted to
the front of the board, and connect to the PC over USB via

Figure 2. Physical setup of Range (left), with diagram of interaction zones (right).

21

the d.tools hardware and libraries [12]. The software
component of Range was written in C# using the Microsoft
Tablet PC SDK and the SMART Board SDK.

Physical Interaction Design
The region in front of the board is divided into four zones,
which we called intimate, personal, social, public in
reference to proxemics pioneer Edward T. Hall’s distance
zones [11]. We defined the intimate zone to be the region in
which users stand to write at the board, testing with
multiple users to increase the robustness of the zone
definitions. The personal zone was set further back, at a
distance (>15 inches back) where users were not “at” the
board, but could easily reach the board for pointing and text
manipulation. The social zone (>25 inches back) was out of
touching distance from the board but in easy viewing
distance of the board. The public zone comprises the
distance beyond the social (> 40" back).

The operational zone was based on the user closest to the
board; we found that this is usually the person with the pen
and thus the person “driving” the interaction at the
whiteboard.

Operation
The SMART Board uses a pen tray with four colored styli
and an eraser. Strokes made with the styli make ink strokes
of the corresponding color on the board, and strokes made
with the eraser remove marks intersected by the erase
stroke. Input on the capacitive board is presumed to be
made by the users’ fingers if all the styli are in the tray;
such finger input is used to select and move ink strokes and
clusters.

We modified the SMART Board operation so that inputs
issued when the user is in the personal zone are read as
select and move operations even if the pen is out of the tray;
this seems more natural to users and lessens the instances of
erroneous input.

Features
We implemented three features in Range that demonstrate
implicit interaction techniques: an automatic transition from
ambient display to drawing space, automatic space clearing,
and automatic ink stroke clustering.

Transition from Display to Drawing Surface
When users are not engaged with Range, the whiteboard
switches to ambient display mode, overlaying the existing
whiteboard contents with a transparent blue backdrop and a
stream of digital images of interest to users. Our
implementation uses snapshots of previous whiteboard
states and other photos of interest from an online photo-
sharing site to improve project awareness.

As a user approaches a Range whiteboard in screensaver
mode, the backdrop fades and the displayed screensaver
content floats off to one side, allowing the user to re-engage
the whiteboard contents beneath. If the user touches the

departing screensaver content, it stops and becomes
selected so that the user may move it to some place on the
whiteboard of his or her choosing. We found this “floating”
to be important because it helped users to form a model of
where ambient images “went to.” This metaphor also
facilitated correction; users found it “natural” to keep
images by grabbing them as they were departing.

Making space
As the designers of Flatland observed, whiteboards are not
merely ephemeral objects: people leave drawings or notes
on the board in order to provide shared reference for groups
[23]. However, a whiteboard full of writing can discourage
whiteboard use, as our informal studies found that users are
hesitant to erase work. Copying content to another surface
takes time, time that may kill a serendipitous, free-flowing
conversation.

To address this problem, Range senses “full boards” and
moves board contents out to the left and right of the board
center when it senses a user approaching, clearing a space
so that the user immediately has a blank space in which to
write. Data on the edges of the board are not affected during
the board-clearing maneuvers.

Clustering Ink Strokes
In order to move text and graphics around while
maintaining coherency of the sketches, the underlying
system needs to have some conception of the semantic units
of whiteboard contents. To achieve this, we have
implemented a simple form of stroke clustering, using the
stroke’s timestamp (time of creation) and location on the
board (estimated by its bounding box). As strokes are
created, the Range system runs a clustering algorithm in the
background: strokes that were either created at the same
time (temporal locality) or that are close together on the
board (spatial locality) are clustered together automatically.

Users are given feedback about the clusters, by way of
dotted light-gray bounding boxes, when they are located in
the personal zone. Users manipulate clusters as an atomic
unit: selecting one stroke in a cluster selects them all by
default, and moving a stroke in a cluster moves the whole
cluster. Users may override the automatic clustering by
lasso selecting one or more strokes, which puts all of the
selected strokes into a new cluster.

IMPLICIT INTERACTION TECHNIQUES
The designs of the three aforementioned features illustrate
the implicit interaction techniques of user reflection, system
demonstration, and override. These features do not
necessarily form an exhaustive set of implicit interaction
techniques, but they provide characteristic solutions to
interaction problems typical of ubiquitous computing [1].

User reflection
User reflection is how the system indicates what it feels
users are doing or would like to have done. User reflection
seeks to validate inferred input; this validation corresponds

22

with what linguists call “recognition and uptake” [6]. Some
variations on user reflection are projections, which reflect a
user’s intent, capability, or desire, feedback, which reflect a
user’s actions, and feed-forward, which reflect the
consequences of a user’s actions.

The trajectory of user reflection in the implicit interaction
framework’s design space is shown for the example of the
ambient display feature in Figure 3. It goes from the lower
left hand quadrant, where the interactive system is
monitoring and responding to user actions in a background
fashion, to the upper right hand quadrant, where the
interactive system proactively calls attention to its
perceptions, actions or potential consequences. Note that
the effectiveness of this technique belies the naïve design
assumption that implicit interactions are created by staying
beneath notice; rather, by implicitly reflecting its perception
of the user’s actions and intentions, the interactive system
can increase the likelihood that it will act in an intuitive or
desirable manner.

The range of implicit techniques for reflection can also be
wider than that of explicit reflective techniques. For
instance, explicit user reflections tend to be intermittent, so
they may be interleaved as interacts take turns speaking;
implicit user reflections can take place continuously,
providing concurrent information about the actions, modes
and states they are reflecting. Early spell-checking
programs, for example, had to be invoked explicitly, and
engaged the user in an explicit dialogue about potentially
misspelled words to enable repair. Contemporary spell-
check features, however, run continuously in the
background, highlighting words that are not in the system’s
dictionary; users may more easily notice potential errors,
but the implicit alert of this interaction is far more seamless
than that of earlier explicit spell-check programs.

User reflection is particularly important in the design of
ubicomp systems, because the potential input space is so
vast that users may have difficulty understanding what
sensed action or state triggered downstream actions. When
designing user reflections, it is important to map specific
features to subsequent acts. It is also useful to perform
fieldwork to understand what meaning exists for different
reflection displays in different contexts. Grocery store
shopping counters [7], for instance, have been designed to
confer special meaning to the objects placed on the counter,
but the design is not arbitrary. The counters are located so
that the placement of objects is in the foreground of both
the shopper and the clerk, and so that the counter helps to
obscure those objects that are not part of the financial
transaction—the bag from the previous store, or your
handbag, for instance.

User reflection in Range
User reflection informed the design of nearly all of Range’s
features. For example, prototype versions of the ambient
display mode in Range reflected the physical zone that
users were detected in by highlighting the resulting mode.

This lead to confusion, as a stray bystander or blocking
object could cause the system to transition unexpectedly. It
took collaborating groups a long time to discern what had
prompted mode changes. Later versions of the ambient
display presented a simple four dot diagram illustrating
what zone people were perceived to be in; this reflection
made it easier for users to comprehend and repair the
situation, thus enabling a more fluid interaction. Similarly,
in the making space feature, some objects are deemed to be
ephemeral and others to be persistent; inadvertent moving
or erasing can be prevented by reflecting the inferred intent
by drawing “pins” on read-only clusters.

The outlining of clustered ink strokes is another example of
user reflection in the Range application. The ink strokes are
implicitly related to one another by their proximity in space
and time. This behavior is based on a tacit understanding of
proximity and association, but is prone to error. For
example, if collaborators draw axes for a graph, and
subsequently add points to the graph, graph points may be
neither spatially or temporally proximal to the original axes
ink strokes, but should still be associated. While a more
sophisticated recognition system might be trained to
comprehend graph drawings, Range’s errors are easily
repaired because the clustered ink stroke outlines give users
feedback about the systems interpretation of the graph, and
enables repair before users try to move the graph and find
that the data points do not follow.

Ubiquitous computing systems can take advantage of
context-sensitive cues in performing user reflection. In the
ink stroke clustering design, for instance, validation occurs
when Range outlines the clusters as the user steps back.
This moment is opportunistic because it follows the period
when the user is actively writing, and should not be
interrupted, and usually precedes the period when the
clusters of text might be automatically selected and moved.

System demonstration
System demonstration is how the system shows the user
what it is doing, or what it is going to do. This differs from

Figure 3. The trajectory of user reflection (solid line) and
override (dotted) used in making space.

23

the traditional conception of output in that it is not
necessarily symbolic, overt, or immediate. When the system
“demonstrates,” it implicitly asks for the user's attention so
that it can make a suggestion or request oversight, thus
reducing the likelihood that it will act in an unanticipated or
unwanted manner even when its actions are not explicitly
prompted. Variations of this technique include offers,
wherein the system projects potential actions,
demonstration-of-action, where the system overtly presents
on-going action as they take place or immediately
afterwards, and demonstration-of-consequence, where the
system overtly calls attention to outcomes of its actions.

The trajectory of system demonstration is shown in Figure
4. Here, system demonstration of Range’s ink-clustering
feature is illustrated on the implicit interaction framework.
The interaction starts in the lower right hand quadrant,
where the system is proactively performing background
actions (here, the task of recognizing ink clusters), and
moves to the upper right hand quadrant to indicate to users
what actions are being taken on their behalf.

The implicit technique of system demonstration is not
unique to ubiquitous computing systems; indeed, people use
demonstration all the time in their everyday interactions
with one another, exaggerating the presentation of their
actions–speaking louder, making large showy movements,
moving slowly–to enable smoother joint activity [7].
Ubiquitous computing systems may make use of the fact
that they have many more potential modes for actuation and
demonstration than are available in a traditional computing
environment. For instance, as a rule of thumb, small-scale
versions of an action (overtly leaning in the direction of the
door) are implicitly understood as an offer or request to
perform the full-scale action (leaving). However, the design
of system demonstrations requires testing with actual users
to rule out false interpretations. Designing demonstrations
for new actions also often requires several trials; users often
do not learn to anticipate an action until they have seen it
occur several times.

System demonstration in Range
System demonstration is employed through the design of
Range’s features. In Range’s transition from the ambient
display to the drawing surface, for instance, the animated
transition of the images and backdrop is a demonstration-
of-action that calls more attention to the mode change than
a sudden switch between modes would. This demonstrated
transition also provides a handle for override, which will be
discussed in the next section, allowing for more seamless
negotiation of what board objects should stay active.
Similarly, the movement of board objects in the making
space feature needs to occur slowly and smoothly enough
that users who detect a problem (ink strokes that are mis-
clustered and hence do not move in concert, for instance)
can more easily remedy the error.

Demonstration need not take place concurrently with the
actions that are being demonstrated. In fact, the
determination of good points to interrupt and alert the user
to background actions are key to fluid interaction design
[9]. When Range clusters ink strokes, the outlines for the
clusters appear when the user steps back into
move/selection mode. This act serves as system
demonstration, as the outlines indicate that the mode has
changed from sketching to editing, how the ink strokes have
been clustered, and what strokes will shift in concert if
moved. The timing of the interaction, however, prevents the
system demonstration from distracting users when they are
actively working on drawing at the whiteboard.

Override
Override techniques allow users to repair misinterpretation
of the user’s state, or to interrupt or stop the system from
engaging in proactive action. This usually occurs after one
of the previous two techniques (user reflection and system
demonstration) alert the user to some inference or action
that is undesirable. Although the two are often conflated,
override is distinct from “undo” because it is targeted at
countering the action of the system rather than reverting a
command by the user.

The trajectories of overrides for user reflection and system
presentation are illustrated in Figures 6 and 7. Overrides
always start in the upper right hand quadrant (because users
cannot repair perceptions or actions that they are unaware
of) and move to the upper left hand quadrant, where the
users are exerting explicit control.

Overrides are often easy to design intuitively, because users
expect to be able to override things. At the point that users
see some unwanted action taking place, they try numerous
ways of trying to override the action; it is merely a matter
of designing a ubicomp system so that the user’s frantic
override behaviors are registered as an input. It is possible
for the designer to design in affordances for overrides—
handles and edges, for example, that the user can grasp, or
shields that the user can use to perform blocks. The wide
array of potential affordances for override in ubiquitous
computing environments can be a blessing or a curse for

Figure 4. The trajectories of system demonstration (solid
line) and override (dotted) used in ink stroke clustering.

24

physical interaction designers; it is important to test to
make sure both that overrides are intuitive and that the
number of potentially override-able actions presented at any
time is limited so that the user is not overwhelmed.

Override in Range
The Range whiteboard demonstrates override capabilities in
several places. In the transition between display and
whiteboard, users can stop the transition by moving out of
the proximal zone of active board use. Users are also able to
“grab” digital content to use it as part of the whiteboard
contents. They can also employ this grabbing technique to
stop the motion of objects that are being moved to make
space in the center of the board.

The design of feedback displays can double as handles for
override; for instance, users who perceive a mis-clustering
of ink strokes by the Range whiteboard can override
Range’s inferred clusters by redrawing the outline. The
interaction cost of manipulation or correction is no more
than it would be without the auto-clustering feature.

IMPLICATIONS FOR DESIGN AND DESIGN RESEARCH
Implicit interactions enable people to communicate
efficiently, but understanding how to design effective
implicit interactions requires more of designers than
intuition about how to make things subtle or invisible.
Indeed, in designing implicit interactions for the Range
whiteboard we found that implicit interactions often rely on
the counterintuitive strategy of calling attention to observed
or inferred perceptions and prospective or on-going actions.

Our analysis of Range shows how the implicit interaction
framework provides a significant contribution to prior
models for implicit interaction [2]; without the key variable
of initiative, it would not be possible to distinguish user
reflection techniques from that of system demonstration
techniques, or indeed, to map the role of override. In
addition, this model helps to show important difference
between designing static objects that utilize what a user
already tacitly knows [24] and designing interactive objects
that proactively engage the user; it is important for
implicitly interactive objects to draw attention in a non-
exclusive and time-sensitive fashion–something that
designers of intuitive hammers do not have to worry about.
Finally, this framework is generative, providing designers
with patterns and templates that are crucial in creating low-
cost response routines for “smart” systems that perform
recognition and proactive action [13].

The implicit interaction framework helps designers to track
and analyze interaction sequences along the critical
interaction variables of attentional demand and initiative.
The key implication of this framework for designers is that
design solutions can be based on patterns of interactions
rather than conventions of domain or context. This means
that implicit interaction techniques developed for one
domain can be generalized and applied analogously to
another domain.

This, in turn, implies that design researchers might go
beyond the profiling of context-specific aspects of various
domains by studying interactions with an eye towards
developing effective and generalizable interaction
techniques. The strategies of user reflection, system
demonstration and override are likely to have many more
variations than those noted in this paper. Design researchers
may be able to broader the understanding of implicit
interactions further, discovering new interaction trajectories
and characterizing their usage.

CONCLUSION
Implicit interactions are evident in the design of everything
from automatic spell-checkers to interactive robots. By
explicitly articulating how, when and why an interaction
designer might use implicit interactions, we widen the
designer’s range in designing for challenging new domains
such as ubiquitous computing.

In this paper, we have provided a proof-of-concept toward
this goal by applying the implicit interaction framework to
the design of an electronic whiteboard application, Range.
Range’s design is targeted specifically to the needs and
practices of informal meeting participants, and yet the
framework allows the interaction design techniques used in
Range to be generalized to inform the design of implicit
interactions in analogous domains.

This work provides a common basis for interaction
designers to explore and share the range of implicit
interactions and techniques. We provided a framework for
better understanding the range of implicit interactions, and
illustrated how implicit interaction techniques can be used
to prevent, mitigate and correct the problems of proactivity
in the area of electronic whiteboard design. The intent of
this work is to provide interaction designers working a wide
variety of disparate domain- and task-specific ubiquitous
computing systems with a framework that allows them to
build on each others’ patterns and techniques. This can
enable designers to better develop more sophisticated ways
of implicitly interacting with systems in everyday life.

ACKNOWLEDGEMENTS
This research was supported by equipment grants from Intel
Corporation and SMART Technologies, a fellowship from the
Intel Foundation, as well as a grant from the Wallenberg
Global Learning Network. Thanks to Terry Winograd, Larry
Leifer, Paz Hilfiger-Pardo, Isabelle Kim, David Akers and
Leila Takayama for their assistance.

REFERENCES
1. Bellotti, V., Back, M., Edwards, K.W., Grinter, R. Henderson,

R., Lopes, C. Making Sense of Sensing Systems: Five
Questions for Designers and Researchers. In Proc. CHI 2002,
ACM Press (2002), 415-422.

2. Buxton, W. Integrating the Periphery and Context: A New
Model of Telematics. In Proc. Graphics Interface 1995,
(1995), 239-246.

25

3. Cavanagh, P. Attention routines and the Architecture of
Selection. In Cognitive Neuroscience of Attention, Posner,
Michael I, ed. Guilford Press (2004), 23-24.

4. Chase, W. G. and Simon, H. A. Perception in Chess. In
Cognitive Psychology 4(1973), 55-81.

5. Chung, E., Hong, J.I., Lin, J. Prabaker, M.K., Landay, J.A.,
and Liu, A.L. Development and Evaluation of Emerging
Design Patterns for Ubiquitous Computing. In Proc. DIS
2004, ACM Press (August 2004), 233-242.

6. Clark, H.H. and Brennan, S.E. Grounding in Communication.
In Perspectives on Socially Shared Cognition, Resnick, L.B.,
Levine, J.M. and Teasley, S.D. eds., American Psychological
Association (1991), 127-149.

7. Clark, Herbert H. Pointing and Placing. In Pointing: Where
Language, Culture and Cognition Meet. Kita Sotaro, ed.
Lawrence Erlbaum (2003), 243-268.

8. Elrod, S., Bruce, R., Gold, R., Goldberg, D., Halasz,F.,
Janssen,W., Lee, D., McCall, K., Pedersen,D., Pier, K., Tang,
J., and Welch, B. Liveboard: A large interactive display
supporting group meetings, presentations and remote
collaboration. In Proc. CHI 1992, ACM Press (1992), 599-
607.

9. Fogarty, J., Hudson, S.E. and Lai, J. Examining the robustness
of sensor-based statistical models of human interruptibility. In
Proc. CHI 2004, ACM Press, 207-214.

10. Guimbretiere, F., Stone, M. and Winograd, T. Fluid
Interaction with High-Resolution Wall-Size Displays, In Proc
UIST 2001, ACM Press (2001), 21-30.

11. Hall, E. The Hidden Dimension. Garden City, Doubleday,
1966.

12. Hartmann, B., Klemmer, S.R., Bernstein, M., and Mehta, N.
d.tools: Visually Prototyping Physical UIs through Statecharts.
In Extended Abstracts of UIST 2005, ACM Press (2005).

13. Horvitz, E., Kadie, C., Paek, T., and Hovel, D. 2003. Models
of attention in computing and communication: from principles
to applications. In Communications of ACM 46(3) ACM Press
(March 2003), 52-59.

14. Ju, W., Ionescu, A., Neeley, L., and Winograd, T. Where the
Wild Things Work: Capturing Physical Design Workspaces.
In Proc. of Conference on Computer Supported Cooperative
Work 2004, ACM Press (2004), 533-541.

15. Ju, W. and Leifer, L. The Design of Implicit Interactions:
Making Interactive Systems Less Obnoxious. In Design
Issues, 24(3) Summer 2008, 72-84.

16. Klemmer, S.R., Newman, M.W., Farrell, R., Bilezikjian, M.,
and Landay, J.A. The Designers' Outpost: A Tangible
Interface for Collaborative Web Site Design. In Proc UIST
2001, ACM Press (2001), 1-10.

17. Landay, J.A and Myers, B.A. Interactive Sketching for the
Early Stages of User Interface Design, In Proc. CHI 1995,
ACM Press (1995), 43-50.

18. LaVie, N. Perceptual Load as a Necessary Condition for
Selective Attention. Journal of Experimental Psychology:
Human Perception and Performance, 21:3 (1995), 451-468.

19. Lin, J., Newman, M.W., Hong, J.I. and Landay, J.A, "DENIM:
Finding a Tighter Fit Between Tools and Practice for Web Site

Design." In Extended Abstracts of CHI 2000, ACM Press
(2000), 510-517.

20. McDonald, D.W., McCarthy, J.F., Soroczak, S., Nguyen, D.H.
and Rashid, A.M. Proactive Displays: Supporting Awarenss in
Fluid Social Environments. In ACM Transactions on
Computer-Human Interaction. (14) 4, 16.

21. Moran, T. P., Chiu, P, van Melle, W. & Kurtenbach, G.,
Implicit Structures for Pen-Based Systems within a Freeform
Interaction Paradigm. In Proc. CHI 1995, ACM Press (1995),
487-494.

22. Moran, T. P.; Chiu, P.; Van Melle, B. Finding and Using
Implicit Structure in Human-organized Spatial Layouts of
Information. In Proc. CHI 1996. ACM Press(1996) 346-353.

23. Mynatt, E. D., Igarashi, T., Edwards, W. K., and LaMarca, A.
Flatland: New Dimensions in Office whiteboards. In Proc CHI
1999, ACM Press (1999), 346-353.

24. Pedersen, E.R. Tacit Interaction Talk in the Stanford
University, Human-Computer Interaction Seminar series, May
14, 1999. Abstract online at:
http://kraka.com/DesignPortfolio/tacit.html

25. Pedersen, E.R., McCall, K., Moran, T. and Halasz, F. Tivoli:
An Electronic Whiteboard for Informal Workgroup Meetings.
In Proc. CHI 1993, ACM Press (1993), 391-398.

26. Prante, T., Röcker, C., Streitz, N. A., Stenzel, R. , Magerkurth,
C. , van Alphen, D. and Plewe, D. A. Hello.Wall –Beyond
Ambient Displays. In Adjunct Proceedings of Ubicomp 2003.
277-278.

27. Russell, D.M., Trimble, J P., and Dieberger, A. The Use
Patterns of Large, Interactive Display Surfaces: Case Studies
of Media Design and Use for BlueBoard and MERBoard. In
Proc HICSS 2004. IEEE (2004).

28. Streitz, N. A., Geißler, J., Holmer, T., Konomi, S. Müller-
Tomfelde, C., Reischl, W. Rexroth, P., Seitz, P., and
Steinmetz, R. i-LAND: An Interactive Landscape for
Creativity and Innovation. In Proc. CHI 1999, ACM Press
(1999), 120-121.

29. Tennenhouse, D. Proactive Computing. In Communications of
the ACM 43:5, ACM Press (May 2000), 43-50.

30. Tolmie, P., Pycock, J., Diggins, T., Maclean, A. and Karsenty,
A. Unremarkable Computing. In Proc. CHI 2002. ACM Press
(April 2002), 399-406.

31. Vogel, D., and Balakrishnan, R. Interactive Public Ambient
Displays: Transitioning from Implicit to Explicit, Public to
Personal, Interaction with Multiple Users, In Proc. UIST 2004,
ACM Press (2004), 137-146.

32. Weiser, M. The Computer for the 21st Century. Scientific
American, 265:3 (September 1991), 94-104.

33. Weiser, M. Ubiquitous computing. In IEEE Computer 26,
IEEE(October 1993), 71-72.

34. Weiser, M. and Brown, J.S. Center and periphery: Balancing
the Bias of Digital Technology. In Blueprint for the Digital
Economy, Tapscott, D. ed. McGraw-Hill (1998), 317-335.

35. Wroblewki, L. Visible Narratives: Understanding Visual
Organization. On Boxes and Arrows, AIGA, January 20th,
2003.

26

